
Midterm Cheat Sheet

By Phanuphat Srisukhawasu

CS2100 Taken in AY2024/25 S2

Last updated: March 11, 2025

Number Systems

Compatible Base Checking

Case 1: Checking base x for addition/subtraction operations.

Case 2: Checking base for other operations. These problems mostly require brute force.

Complement Systems

Given that n/m is the number of integer/fractional digits

1. Consider the first digit from LSB where adding digits cause overflow, i.e. the sum is

lesser than one of the original values.

2. Apply the formula: (digit1 + digit2) % x = resultDigit and find x from here.

(r-1)'s complement: X ′ = r
n − r

−m − X (ranging from −(r
n−1 − 1) to rn−1 − 1).

r's complement: X ′′ = r
n − r

−m − X + 1 (ranging from −r
n−1 to rn−1 − 1).

Example

Calculate 0101.11 − 010.0101 (in binary).

Solution:

Calculate 10's complement of −1 in 4 bits representation.

Solution: −1 can be represented in 9's complement as 104 − 10−0 − 1 = 9998 and as

9998 + 1 = 9999 in 10's complement.

0101.1100 − 0010.0101 = 0101.1100 + (24 − 2−4 − 0010.0101)

= 0101.1100 + (10000 − 0.0001 − 0010.0101) = 0101.1100 + (1111.1111 − 0010.0101)

= 0101.1100 + 1101.1010 = (1)0011.0110 = 0011.0111

Warning

1. In base-r complements, digit weights are not applicable except when r = 2.

IEEE-754 Representation

Note: Decimal + 127 = Excess-127 and Excess-127 - 127 = Decimal. This formula can be

useful when converting the number back (from step 5. to 1.)

C Programming

C always uses pass-by-value, but we can simulate pass-by-reference with pointers.

2. Always extend the digits in both integer and fractional parts to match the other

operands, as shown in the first example.

3. (r−1) s̓ complement propagates a carry-out to the end, whereas r s̓ complement

will just ignore the carry.

Example

Find the decimal value of 0xC4007000 .

Solution:

1. Use the calculator to convert from hex to binary (group by 1, 8, 23 bits): 0b1
10001000 00000000111000000000000 .

2. Read the first bit (0 is positive and 1 is negative).

3. The next 8 bits are the exponent in Excess-127 format. 0b10001000 = 136

(Excess-127) = 136 - 127 = 9 (in decimals).

4. Write the expression as ±1.XX … X × 2n where X's are the remaining 23 bits =

−1.00000000111 × 29 which is -0b1000000001.11 (like scientific notation).

5. Convert the resulting binary bits into decimal using the calculator: -513.75.

Tip

The range of the Excess-M system is from −(M − 1) to M.

The smallest positive number representable in the IEEE-754 format is given by:

1.00 … 0 × 2−126.

The most negative number representable in the IEEE-754 format is given by:

−1.11 … 1×2127.

Warning

1. An array name (arr) is a fixed pointer to its first element (&arr[0]), meaning
you can't reassign it (arr1 = arr2 is invalid).

MIPS Programming

Instruction Encoding & Decoding

Register

Aside from the constant zeroes ($zero), we have t for temporaries and s for saved

temporaries.

$t0 $t1 $t2 $t3 $t4 $t5 $t6 $t7 $t8 $t9

01000 01001 01010 01011 01100 01101 01110 01111 11000 11001

$s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7

10000 10001 10010 10011 10100 10101 10110 10111

R-Format

The instruction can be determined using the funct field. The shift amount (shamt) is
only applicable to shift left/right logical instructions.

Mnemonic opcode
(6)

rs
(5)

rt
(5)

rd
(5)

shamt
(5)

funct
(6)

add rd, rs, rt 000000 rs rt rd 00000 100000

sub rd, rs, rt 000000 rs rt rd 00000 100010

sll rd, rt,
shamt

000000 00000 rt rd shamt 000000

2. When passed to functions, an array decays into a pointer to its first element.

3. struct objects are always passed by value (copied in full), except when passing

the pointers to the object.

4. Arrays of struct objects are effectively passed by reference through pointers.

5. To increment a pointer s̓ value, use (*p)++ . Writing *p++ increments the pointer

itself (by size in bytes of the corresponding data type), not the value it points to.

Encoding: Refer to the instruction sheet, write the entire instruction in binary, and then

convert to hex using the calculator.

Decoding: Convert hex to binary using the calculator. Write the encoded instruction.

After noting the first 6 bits, read the actual opcode to determine the type of the

instruction. The subsequent groupings depend on whether it is R (5/5/5/5/6), I

(5/5/16), or J (26) format.

Mnemonic opcode
(6)

rs
(5)

rt
(5)

rd
(5)

shamt
(5)

funct
(6)

srl rd, rt,
shamt

000000 00000 rt rd shamt 000010

and rd, rs, rt 000000 rs rt rd 00000 100100

or rd, rs, rt 000000 rs rt rd 00000 100101

xor rd, rs, rt 000000 rs rt rd 00000 100110

nor rd, rs, rt 000000 rs rt rd 00000 100111

slt rd, rs, rt 000000 rs rt rd 00000 101010

I-Format

The immediate is always a 16-bit integer. You need to use load upper immediate (lui)
with ori (for the lower 16 bits) to extend it to 32 bits.

Mnemonic opcode (6) rs (5) rt (5) immediate (16)

beq rs, rt, relative address 000100 rs rt number of words

bne rs, rt, relative address 000101 rs rt number of words

addi rt, rs, immediate 001000 rs rt immediate

andi rt, rs, immediate 001100 rs rt immediate

ori rt, rs, immediate 001101 rs rt immediate

xori rt, rs, immediate 001110 rs rt immediate

lui rt, immediate 001111 00000 rt immediate

lb rt, immediate(rs) 100000 rs rt immediate

lw rt, immediate(rs) 100011 rs rt immediate

sb rt, immediate(rs) 101000 rs rt immediate

sw rt, immediate(rs) 101011 rs rt immediate

Tip

The opcode of the R format instruction is always 000000 .

Warning

The number of words in the branch instruction is measured relative to PC + 4 . That
is, we jump to (PC + 4) + (Immediate * 4) if the branch is taken.

J-Format

The memory address is always 32 bits. However, since it must be well-aligned with offsets

as multiples of 4, the last 2 bits can be ignored.

Mnemonic opcode (6) address (26)

j address 000010 26-bit target address (shifted left by 2 when used)

Instruction Set Architecture (ISA)

Maximum and Minimum Number of Instructions

Case 1: There is at least 1 instruction on each instruction type.

Case 2: Each instruction type has a minimum required number of instructions, which may

vary, but some must be greater than 1.

Warning

1. The full address is formed using the upper 4 bits of PC + 4 . This can cause jump
instructions to fail if PC is near a boundary—specifically, when the upper 4 bits of

PC + 4 differ from those of PC .

2. The maximum jump range in bytes is 228 from PC + 4 . In general, it follows the
formula: 2immediate×word size (4 in MIPS).

Example

There are three types of instructions: A (4-bit opcode), B (7-bit opcode), and C (8-

bit opcode). Find the maximum and minimum total number of instructions.

Solution:

In this example, we don't subtract 1 for the last instruction (C) since we don't need to

allocate anything for the subsequent instruction types.

1. Max = (28 − 28−7 − 28−4) + (1) + (1) = 240 (Maximize C / Minimize A and B)

2. Min = (24 − 1) + (27−4 − 1) + (28−7) = 24 (Maximize A and B / Minimize C)

Example

There are three types of instructions: X (2-bit opcode), Y (4-bit opcode), and Z (7-

bit opcode). We need at least 2 X-Type and Y-Type Instruction with at least 1 Z-Type

MIPS Datapath and Control

General Path

Refer to this diagram to trace the instruction execution path.

Instruction. Find the maximum and minimum total number of instructions.

Solution: We use a similar approach as above but scale the relevant terms based on

the number of instructions allocated for each instruction type.

In this example, we need to allocate two instructions for X and Y. Note that the

minimum number of instructions does not need to be a power of two.

1. Max = (27 − 27−4(2) − 27−2(2)) + (2) + (2) = 48 + 2 + 2 = 50.

2. Min = (2 + (22/2 − 1)) + (2 + (24−2/2 − 1)) + (27−4) = 3 + 3 + 8 = 14.

Info

The multiplexer MemToReg is reversed only because the wires cross on the diagram.

Tip

The standard control signals for different types of instruction are shown below.

Critical Path

Instruction RegDst ALUSrc MemToReg RegWrite

R-type 1 0 0 1

lw 0 1 1 1

sw X 1 X 0

beq X 0 X 0

Instruction MemRead MemWrite Branch ALUop1 ALUOp0

R-type 0 0 0 1 0

lw 1 0 0 0 0

sw 0 1 0 0 0

beq 0 0 1 0 1

Example

Given below are the resource latencies of various hardware components in

picoseconds (ps): Inst-Mem (400 ps), Adder (100 ps), MUX (30 ps), ALU (120 ps),

Reg-File (200 ps), Data-Mem (350 ps), Control/ALU Control (100 ps), Left-

shift/Sign-Extend/AND (20 ps). Determine the latency for the instruction lw $24,
0($15) .

Solution

Fetch stage: Fetching the instruction from memory takes 400 ps. In parallel, PC
+ 4 is computed using an adder, costing 100 ps, but this is not critical.

Decode stage:

Reading the opcode to determine the instruction type and field lengths takes

no time.

Reading data from the register file takes 200 ps.

The control unit determines control signals and propagates them in 100 ps,

but this is not critical.

MUX inputs are pre-determined, so the RegDst and ALUSrc MUX takes no

additional time later. However, other MUXs still need to wait for the input.

ALU stage: Computing the memory address using the ALU takes 120 ps.

Memory stage: Reading data from memory takes 350 ps.

Register write stage: The result passes through the MemToReg MUX and is

written to the register file, taking 30 + 200 = 230 ps.

ALU Slice

Total latency: 400 + 200 + 120 + 350 + 230 = 1300 ps.

Warning

For branch instructions, there is a parallel execution of steps 2 and 3, which involve

the following:

This combined operation costs a total of 140 ps, which is less than the combined

latency of steps 2 and 3 in the above example.

After execution, the branch instruction waits at the PCSrc MUX for the is0? signal

from the ALU, which is ANDed with the branch signal (20 ps) before passing through

the MUX (30 ps).

1. Sign-extending the immediate (20 ps),

2. Left-shifting by 2 (20 ps),

3. Adding to PC + 4 (100 ps).

Tip

Good to Memorize

The standard ALUControl signals for different types of instruction are shown below.

Instruction ALUControl

lw 0010

sw 0010

beq 0110

add 0010

sub 0110

and 0000

or 0001

slt 0111

Note:

The first two bits indicate A inverse and B inverse. B inverse is 1 only for

subtraction.

The last two bits follow the ALU slice's operation order: 00 for and , 01 for or ,
10 for add , and 11 for slt (hidden).

Example

Given that all logic gates take 1 ps (picosecond) and MUXs take 2 ps, determine the

maximum latency of a 4-bit ALU.

Solution:

Inputs A and B arrive in parallel. The longest delay comes from inverting both,

which takes max{1 + 2, 1 + 2} = 3 ps.

All operation gates also run in parallel, taking max{1, 1, 1} = 1 ps for bit 0.

However, carry propagation occurs from LSB to MSB. Since all slices operate in

parallel, bits 1, 2, and 3 must wait 1 ps per previous bit. This delay accumulates,

making the critical path for the MSB take 1 + 1 + 1 = 3 ps. Note that each 1

corresponds to the operation gate, not the propagation.

The total time so far is 6 ps. After passing through the operation MUX, the final

delay is 6 + 2 = 8 ps.

No Operation (NOP) can be implemented by an instruction that avoids reading/writing

to memory or modifying registers.

Register File is a set of 32 registers, excluding immediate values.

Instruction Register (IR) holds the encoded instruction currently being executed.

Special Register: The stack pointer ($sp) points to the last occupied location at the
top of the stack, which grows downward in memory.

Rising Edge of the Clock Cycle: The moment when the program counter (PC) is
updated.

Single-Cycle Implementation: The cycle time is determined by the slowest

instruction.

Multi-Cycle Implementation: Each instruction is broken into steps, with each step

taking one cycle. The overall cycle time depends on the slowest step.

Implementation of slt : We get the sign bit from bit 31 and carry that to be bit as well

as setting the remaining bits to be 0. If the result is negative, bit 0 will be 1.

Endianness refers to the order in which bytes are arranged in a multi-byte word stored

in memory. In big-endian format, the most significant byte (MSB) is stored at the

lowest memory address, while in little-endian format, the least significant byte (LSB)

is stored at the lowest memory address.

